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Parametric Curves and Surfaces

Akenine-Möller, Haines and Hoffmann:

I Parametric curves (Chapter 13.1)

I Bézier curves (Chapter 13.1.1)

I Parametric curved surfaces (Chapter 13.2)

I Bézier patches (Chapter 13.2.1)

Red Book

I Evaluators and NURBS (Chapter 12)
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Curved geometry
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Curved geometry
Not all things are flat, but polygons are - need many of them

Higher order descriptions of geometry:

I curved (non-flat) geometry

I described by mathematical expressions

I typically few parameters

I compact format (storage, transmission, transformation)

I scalable wrt resolution (vector vs raster images)

I easier to manipulate, animate, ...

I ... but must be tesselated for visualization
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Parametric curves
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Parametric Curves
A parametric curve is defined as a map

p : [a, b]→ Rn,

where usually n = 2 or n = 3.

a t b

p

p(a)
p(t)

p(b)

p maps each parameter value t between a and b to a
corresponding point p(t) = (x(t), y(t)).

The range of valid parameter values [a, b] is called the domain.
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A parametric curve has a direction corresponding to increasing t,
beginning at p(a) and ending at p(b).

If p(t1) = p(t2) for two distinct parameter values t1 and t2, we say
that the curve has a self-intersection, otherwise it is simple

P(a)
P(b) P(a) = P(b)

In the special case that p(a) = p(b), i.e., the curve intersects itself
at the end-points, the curve is closed.

On the other hand, if p(a) 6= p(b), we say that the curve is open.
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Continuity

Normally, we assume that the curve P is at least continuous,

lim
ε→0
||p(t + ε)− p(t)|| = 0,

for all t, i.e. p(t + ε) approaches p(t) as ε approaches 0

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

3

p is C r continuous/smooth if d ip
dt i

is continuous for i = 0, ..., r
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Tangent and normal

If the curve p : [a, b]→ Rn is differentiable at a point p(t), we
write its (vector) derivative as

d

dt
p(t) or p′(t).

The curve is regular if p′(t) 6= 0 at every parameter value t. We
call T (t) = p′(t) the tangent at p(t) (direction and speed)

P(t)
P’(t)

The normal N(t) of a plane curve is orthogonal to T (t), in the
direction the curve is turning
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Curvature

The curvature κ(t) measures how fast the tangent (or normal)
turns in p(t) for a C 2 curve

In a regular point p(t):

κ(t) =
‖p′(t)× p′′(t)‖
‖p′(t)‖3

,
P(t)

P’(t)

where × denotes the cross product,

u× v = (uyvz − uzvy , uzvx − uxvz , uxvy − uyvx).

κ(t) = 1/ρ(t), where ρ(t) is the radius of the osculating circle.
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Bézier curves
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Polynomial curves

A polynomial function of degree d can be defined as

c(t) =
d∑

i=0

ci t
i = c0 + c1t + c2t2 + . . .+ cd td ,

for real coefficients ci . Called power form if using t, t, t2, ...

A polynomial curve of degree d can be defined as

p(t) = (x(t), y(t), ...) =
d∑

i=0

pi t
i = p0 + p1t + p2t2 + . . .+ pd td ,

for coefficients pi ∈ Rn.
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Example: line segment in power form
Example: A line segment [p0,p1] can be written

p(t) = p0 + (p1 − p0)t for t ∈ [0, 1]

0 t 1

p

p0 p(t)

v = p1 − p0

There are better ways to represent polynomial curves...

p(t) = p0 + (p1 − p0)t = (1− t)p0 + tp1
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Example: line segment on Bezier form

Example: A line segment [p0,p1] can be written in Bézier form

p(t) = (1− t)p0 + tp1 for t ∈ [0, 1]

0 t 1

p

p0 p(t)

p1

Bezier segment: p(t) is a convex combination of the endpoints
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P
1

P
2

P

P
0

3

In general, a Bézier curve of degree d is written

p(t) = (1− t)dp0 + dt(1− t)d−1p1 + . . .+ tdpd

=
d∑

i=0

(
d

i

)
t i (1− t)d−i︸ ︷︷ ︸
Bi,d (t)

pi =
d∑

i=0

piBi ,d(t).

where
(d
i

)
= d!

i!(d−i)! are the Binomial coefficients and

I Bi ,d are the Bernstein polynomials of degree d
I The vertices (pi ) are control points of p
I The polygon [p0,p1,p2, ...] is the control polygon of p
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Example: Bezier curve applet

http://www.math.psu.edu/dlittle/java/parametricequations/beziercurves/index.html
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The Bernstein polynomials

B
0,3

1,3 2,3

3,3
BB

B

0 1

(1− t)3, 3t1(1− t)2, 3t2(1− t)1, t3

The (Bi ,d)i form a basis for the polynomials of degree ≤ d .

I Alternative to power basis (t i ) = 1, t, t2, ...

I
∑

i Bi ,d(t) = 1

I Bi ,d(t) ≥ 0 for t ∈ [0, 1]

I Simple to generalize to [a, b]

I min ci ≤
∑

i ciBi ,d(t) ≤ max ci (Convex Hull Property)
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Evaluation

B
0,3

1,3 2,3

3,3
BB

B

0 1

There are two recursive approaches to evaluating Bézier curves.

p(t) =
∑

piBi ,d(t)

1. Recursion on basis functions

2. Recursion on control points
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Recursion on basis functions

Idea:

1. Evaluate each basis function, i.e. Bi ,d(t)

2. Compute p(t) =
∑

piBi ,d(t)

I We can evaluate the Bernstein functions recursively using

Bi ,d(t) = (1− t)Bi ,d−1(t) + tBi−1,d−1,

where we define B0,0 = 1 and Bi ,d = 0 for i < 0 and i > d .

=⇒ Thus, a d-degree basis function can be written as a convex
combination of two d − 1 degree basis functions.
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1
−

t

1
−

t
1
−

t

t

t t

B0,0 = 1

B0,1 B1,1

B0,2 B1,2 B2,2

I First set B0,0 = 1,
I then B0,1 and B1,1 from multiplication with B0,0,
I then B0,2,B1,2,B2,2 from mult. with B0,1 and B1,1 . . .

=⇒ This gives us a triangular scheme for (Bi ,d)
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Recursion on the control points
de Casteljau algorithm:

1. Relabel the control points, with p0
i = pi

2. Apply repeated linear interpolation for r = 1, ..., d

pr
i = (1− t)pr−1

i + tpr−1
i+1 , i = 0, ..., d − r

3. Then p(t) =
∑d

i=0 piBi ,d(t) = pd
0

P

P    = P(t)

P
1

1

1

1

0

0

P

P

P

P

P

P

P2

2

2

3

0

0

0

2

0
0

0

3

1

1
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1−t t

P P P

P

0 1 2
0 0 0

1−t t

P 1

1−t t

P 1

P 0
3

1−t t

P
0

1−t t

P

1−t t

P
0

1
0 1 2

2 2

3

1

Yields a triangular scheme for a point p(t) on the Bézier curve,

pd
0 = p(t) =

d∑
i=0

piBi ,d(t)

Applet (enable show parametrization):
http://www.math.psu.edu/dlittle/java/parametricequations/beziercurves/index.html
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Shape preservation

The shape of the Bézier curve p(t) =
∑d

i=0 piBi ,d(t) mimics the
shape of the control polygon.

Bézier curves have the convex hull property: the curve is contained
in the convex hull of its control points.

P
1

P
2

P
0

P
3
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Bézier curves have the variation diminishing property:

The curve has no more intersections with a plane (or
line in R2) than its control polygon.

Thus a curve has less shape variations than the control polygon.

I.e, if the control polygon is convex then so is the curve itself.
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Derivatives
The derivative of the Bernstein polynomial Bi ,d is

B ′i ,d(t) = d(Bi−1,d−1(t)− Bi ,d−1(t)),

and it follows that p′(t) is a new ”tangent” Bézier curve:

p′(t) = d
d∑

i=0

pi (Bi−1,d−1(t)− Bi ,d−1(t))

= d
d−1∑
i=0

(pi+1 − pi )Bi ,d−1(t) =
d−1∑
i=0

p′iBi ,d−1(t).

Control pts. of p′ equals tangents of the control polygon p0,p1, ...

P
1

P
2

P
0

P
3
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For higher derivatives we define the r -th forward difference by

∆pi = pi+1 − pi

and
∆rpi = ∆r−1pi+1 −∆r−1pi

so that
∆2pi = pi+2 − 2pi+1 + pi

and
∆3pi = pi+3 − 3pi+2 + 3pi+1 − pi ,

and so on.

The r -th derivative of a Bézier curve is then

p(r)(t) =
d!

(d − r)!

d−r∑
i=0

∆rpiBi ,d−r (t).

26/52



Composite curves, Continuity

Polynomial curves are C∞ smooth, but for complex shapes one
must join curves with some continuity:

I Geometric (G r ) continuity (tangent/normal continuous)

I Parametric (C r ) continuity (derivatives continuous)

Composite curves require continuity conditions to be satisfied
27/52



Composite polynomial curves - Fonts

Many fonts are constructed using composite Bézier curves, eg.
True type (degree 2) and Postscript Times Roman (degree 3)

1.5. A GEOMETRIC CONSTRUCTION OF SPLINE CURVES 21

Figure 1.17. The letter S in the Postscript font Times Roman. 28/52



Subdivision curves
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Subdivision of Bézier Curves

I We have seen that the de Casteljau algorithm evaluates a
Bézier curve from its control polygon.

I The intermediate points of the de Casteljau algorithm define
the control points of two Bézier segments representing the
original.

=⇒ We can divide one Bézier segment into two Bézier segments!
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I On the left is the triangular structure of the intermediate
points of the de Casteljau evaluation.

I On the right is a figure of the points.

p2
0

p1
1

1−t t

1−t t 1−t t

1−t t

p0
2 p1

2

p2
1

p3
0

p0
3

p1
0 p2

0

p3
0

p2
1

p1
2

p0
0

p0
1

p0
2 p0

3

p1
0

p0
1

p0
0

1−t t

1−t t

I The original segment on [0, 1] has control points p0
0,p

0
1,p

0
2,p

0
3.

I The segment on [0, t] has control points p0
0,p

1
0,p

2
0,p

3
0.

I The segment on [t, 1] has control points p3
0,p

2
1,p

1
2,p

0
3.
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I If we divide at t = 1
2 , we get

p0
0 = p0

0 p3
0 = 1

8(p0
0 + 3p0

1 + 3p0
2 + p0

3),

p1
0 = 1

2(p0
0 + p0

1), p2
1 = 1

4(p0
1 + 2p0

2 + p0
3),

p2
0 = 1

4(p0
0 + 2p0

1 + p0
2), p1

2 = 1
2(p0

2 + p0
3),

p3
0 = 1

8(p0
0 + 3p0

1 + 3p0
2 + p0

3), p0
3 = p0

3,

I This is a refinement rule for cubic Bézier curves.

I Under repeated division, called subdivision, the control
polygon converges to the curve.

I In practice: render the control polygon after a few subdivisions

I There are similar rules for (uniform) splines

I Subdivision curves are defined by such refinement rules.
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Subdivision curves

I Curves generated by iterative refinement of a given control
polygon (vertices=control points).

I The result after infinitely many steps is called the limit curve.

I Both Bézier curves and spline curves are subdivision curves.
(I.e. there exists subdivision schemes to generate them)

I Many such schemes (subdivision zoo).
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Chaikin’s scheme
I From control points . . . ,pi−1,pi ,pi+1, . . .,

0

p i
0 p i+1

0

p2i+1
1

p2i
1

p i−1

we refine with the rule

pk+1
2i =

1

4
pk
i +

3

4
pk
i−1

pk+1
2i+1 =

3

4
pk
i +

1

4
pk
i−1

Important: The indices differs
slightly from the book.

I Repeat the refinement ad infinitum.

! Observation: the number of points doubles at each iteration.

I Converges to a quadratic uniform spline curve (C 1) .
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Masks and stencils
Collect coefficients into even stencil and odd stencils (rules)

ae = {14 ,
3
4} and ao = {34 ,

1
4},

and get

pk+1
2i =

1

4
pk
i +

3

4
pk
i−1 =

∑
j∈Z

aej p
k
i−j

pk+1
2i+1 =

3

4
pk
i +

1

4
pk
i−1 =

∑
j∈Z

aoj pk
i−j ,

combined, the even and odd stencils form the mask of the scheme,

a = {14 ,
3
4 ,

3
4 ,

1
4}

which yields pk+1
i =

∑
j∈Z ai−2jp

k
j for i ∈ Z

The mask express the influence of an old vertex on the new verts.
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C 2 cubic spline subdivision

Another example is a C 2 cubic spline curve.

p i
0 p i+1

0

p2i+1
1

p i−2
0

p2i
1

p i−1
0

The subdivision rule is

pk+1
2i =

1

8
pk
i +

6

8
pk
i−1 +

1

8
pk
i−2

pk+1
2i+1 =

1

2
pk
i +

1

2
pk
i−1

i.e. even (vertex) and odd (edge) stencils

ae = {18 ,
6
8 ,

1
8} and ao = {12 ,

1
2},

and the mask
a = {18 ,

1
2 ,

6
8 ,

1
2 ,

1
8}.

Note: stencils are convex combinations of control points
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General C d−1 uniform spline subdivision

Mask for Cd−1 uniform spline curve of degree d is given by

a = {a0, a1, . . . , ad+1} =
1

2d

{(
d + 1

0

)
,

(
d + 1

1

)
, . . . ,

(
d + 1

d + 1

)}

Examples:

a = {12 , 1,
1
2} Linear spline

a = {14 ,
3
4 ,

3
4 ,

1
4} Quadratic spline (Chaikin)

a = {18 ,
1
2 ,

6
8 ,

1
2 ,

1
8} Cubic spline

a = { 1
16 ,

5
16 ,

10
16 ,

10
16 ,

5
16 ,

1
16} Quartic spline

Note: level d mask can be obtained by averaging level d − 1 masks

37/52



Interpolatory subdivision

Quadratic spline scheme: convex comb. yields convex hull-property

The so-called four-point scheme interpolates control points
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Subdivision surfaces
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Subdivision surfaces
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Subdivision surfaces

Generated by iterative refinement of a polygonal mesh.

Usually, the mesh has

I four-sided faces (quadrilateral meshes) or

I three sided faces (triangle meshes).

Scheme given by refinement rule, typically generalize 1D rules

Can repeat to infinity in theory, interested in limit surface
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Loop subdivision

A subdivision scheme for arbitrary triangle meshes.

The Loop scheme is based on so-called C 2 quartic ‘box-splines’
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The Loop subdivision scheme uses the 1-4 split:

After one subdivision step each former triangle is replaced by four:

|Vi+1| = |Vi |+ |Ei |,
|Ei+1| = 2|Ei |+ 3|Ti |,
|Ti+1| = 4|Ti |.

There are only two stencils in the Loop scheme:

1. positions for vertices corresponding to the old vertices

2. positions for vertices corresponding to edge points.
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The vertex rule is a combination of the position of the old vertex
and its immediate neighbours:

β

β

β

β
β

β

β

1−nβ

where

β =
1

n

(
5

8
− (3 + 2 cos(2π/n))2

64

)
.

The ‘canonical’ case is n = 6 in
which case the scheme reduces to
‘box-spline’ subdivision, yielding
a C 2 surface.

The limit surface is C 1 at extraordinary points, and C 2 elsewhere.
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The edge rule is a combination of the vertices of the two triangles
adjacent to that edge:

3/8

1/8

3/8

1/8

Then, what should we do along the boundary?
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A common technique for dealing with the boundary in the Loop
scheme is to let the boundary curve be a cubic spline.

Recall that the mask of cubic spline curve subdivision is

a = {18 ,
1
2 ,

3
4 ,

1
2 ,

1
8}

and let boundary edge points be determined by the odd stencil and
the boundary vertices be determined by the even stencil, i.e.,

1/8

1/8

3/4

1/2

1/2
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√
3 subdivision

A subdivision scheme for arbitrary triangle meshes.

The
√

3 subdivision scheme of Leif Kobbelt creates only 3 new
triangles per triangle in each subdivision step (Loop creates 4).

C 1 continuous in extraordinary vertices and C 2 elsewhere
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The splitting scheme of
√

3 subdivision is:

Given a triangle mesh, compute
the new positions for the vertices
as well as the triangle midpoints
from the old vertices,

split each triangle into three new
triangles,

then swap the diagonal of all
pairs of adjacent triangles where
the common edge is an old edge.
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We can create the new triangles directly:

Each edge in the old mesh yields two new triangles.

To handle boundaries, we use the same rules as Loop (Slide 48) to
calculate boundary edge points and boundary vertices.

Each boundary edge yields two
new triangles connecting the end
points of the edge, the adjacent
triangle midpoint, and the edge
point.

Note: Only boundary edges get an edge point!
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√
3 subdivision has a vertex rule and a triangle rule:

β

β

β

β
β

β

β

1−nβ

The vertex rule is a blend of the old
position and the surrounding
vertices, where

β =
4− 2 cos(2π/n)

9n
.

The triangle midpoint rule is simple,
the position is the barycentre of the
triangle.

1/3

1/3

1/3
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Interpolatory subdivision schemes

The butterfly scheme: vertex points
preserved, edge points by affine
combination

Yields C 1 smooth surfaces that interpolates control mesh

Approximating (spline-based) and interpolatory schemes produce
very different limit surfaces
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The last slide

I Litterature:
I G. Farin, “”Curves And Surfaces For CAGD: A Practical Guide“”

I Courses:
I MAT-INF4170 - Spline methods
I MAT-INF4160 - Topics in Geometric modelling

Next time: more smooth surfaces
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